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a b s t r a c t

The paper presents a 2D numerical model where the behavior of a salt gradient solar pond (SGSP) is
described in terms of temperature, salt concentration and velocity with the fluid density and viscosity
dependent on temperature and salt concentration. The discretization of the governing equations is based
on the respective weak formulations. The rectangular geometry allows for spectral type Galerkin approx-
imations for which the essential homogeneous boundary conditions can easily be imposed. Taking into
account the variation of density and viscosity with temperature and salinity improved the agreement
between the numerical and the experimental results.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A salt gradient solar pond (SGSP) is a basin containing a mixture
of water and salt heated by solar radiation and used as an energy
storage device. A temperature gradient (hotter at the bottom and
cooler at the top) is established and a salt concentration gradient
(denser at the bottom and lighter at the top) is therefore created
and supposed to prevent convective motions that would otherwise
promote the return of the stored energy to the outside ambient and
thus destroying the pond’s very purpose. A double diffusion pro-
cess occurs where the temperature and salinity fields make oppo-
site contributions to the fluid density.

There have been several attempts for the numerical solution of
the governing equations. For example, Hull [1], Hawlader and
Brinkworth [2] and Rubin et al. [3] have applied a finite difference
method while [4] has used a finite element technique. The pond
stability that constitutes one of the key factors governing a SGSP
performance has been studied by several researchers who have re-
sorted in most cases to the linear perturbation theory, see in par-
ticular [5–8] and [9]. The results obtained from these studies
have provided important information regarding the onset of the
instabilities as well as the existence of several possible stable or
unstable states that may arise.

Weinberger [10] was the first to give a mathematical formula-
tion of the behavior of a salinity gradient solar pond, analyzing
among other things the absorption of the solar radiation by the
ll rights reserved.
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brine solution, the losses to the atmosphere and to the ground
and the double diffusion effect. The analytical solution of the par-
tial differential equations for the transient temperature distribu-
tion was obtained by superposing the effects of the radiation
absorption at the surface, in the body of water and at the bottom.

Meyer [11] developed a numerical model to predict the time
dependent behavior of the interface between the convecting and
the non-convecting regions of the solar pond. The model utilizes
the empirical correlations that describes the heat and the salt
fluxes across the interfaces of the pond regions.

Panahi et al. [12] employed a one-dimensional model to simu-
late the dynamic performance of the salinity gradient solar pond
with a finite element technique.

Angeli and Leonardi [13] and [14] investigated the development
of salt concentration profiles in a SGSP and studied the salt diffu-
sion and stability of the density gradient. The prediction of the so-
lar pond stability and performance was made by calculating the
optimum salinity gradient thickness and its transient behavior tak-
ing into account the seasonal changes of both solar radiation and
solar pond temperature (see also [15]).

Mansour et al. [16] solved numerically the problem of transient
heat and mass transfer and long term stability of a SGSP through a
2D model and a finite volume method.

In theoretical stability studies, the vertical gradients of temper-
ature and salt concentration are usually assumed constant as this
facilitates the analysis, see [17–19,11,8,9].

However, in reality the viscosity may depend strongly on tem-
perature and salt concentration, exponentially or even super-expo-
nentially. In the case of solar ponds, where the temperature can
range typically from 90 �C at the bottom and 20 �C at the top, the
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Fig. 1. Geometry and notation.

Nomenclature

a scalar field, Eq. (1)
a; b; c;d fitting parameters, Eq. (16)
Cp specific heat ½J=kg�C�
g gravity acceleration ½m=s2�
h convection coefficient, Eq. (3) ½w=mk�
L1; L2 domain length and height
n unit vector
p pressure ½N2=m�
q flux, Eq. (2)
S salt concentration ½kg=m3�
T temperature ½K�
T viscous stress tensor, Eq. (5)
t time ½s�
u generic scalar field, Eq. (1)
v velocity field ½m=s�
x ¼ ðx1; x2Þ Cartesian co-ordinates

Greek symbols
aS salt diffusivity ½m3=kg�
aT thermal diffusivity ½K�1�
@ partial derivative
l dynamic viscosity ½m2=s�
c convection coefficient, Eq. (3) ½W=m2k�

X domain
C boundary of X
m kinematic viscosity½m2=s�
w stream function
h dimensionless temperature
x dimensionless concentration
q fluid density½kgm3�
r coefficient, Eq. (1)
r gradient
r� divergence

Subscripts
1, 2, 3, 4 ith face of the domain X
amb ambient
0 initial
f final
S salt
T temperature

Superscripts
_y time derivative
vT transpose
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viscosity can vary by one order of magnitude and in many indus-
trial and geophysical applications even much more. In stability
studies this implies the base state to depart from constant temper-
ature and salinity gradients. Concerning the case of linear stability,
perturbations are assumed to be infinitesimal and then they act
with constant viscosity over a base state calculated with a variable
viscosity. However, if a full nonlinear analysis is envisaged, the per-
turbations are no longer infinitesimal and the viscosity variation
has to be dully accounted for as was shown both theoretically
and experimentally by [20] in the context of a Rayleigh–Bénard
problem with glycerol. The observations of [21] show that in a real
solar pond the salt gradient is far from constant. In [22] the effect
of a constant temperature gradient but a variable vertical salt gra-
dient on the stability of a fluid layer was considered. An experi-
mental programme to assess the various configurations at the
onset of convection in the presence of temperature dependent vis-
cosity was carried out by [23].

A linear stability study with variable fluid properties and a non-
linear basic salt concentration was presented in [24] for a horizon-
tally infinite fluid layer subject to small perturbations. In [25,26]
the effect of a exponentially temperature dependent viscosity in
natural convection for high or infinite Prandtl number is assessed
and comparisons with the case of constant viscosity are presented.
The control of a SGSP to ensure successful year round operation
was studied in [27] employing a one-dimensional model and is
typical of the practical difficulties facing a realistic modeling of
such devices.

The present paper considers a rectangular cavity filled with
either glycerin or a mixture of water and salt (sodium chloride,
NaCl) heated at the bottom. The fluids are treated as newtonian
incompressible, heat conducting according to Fourier’s law and
the salt diffusion obeys Fick’s law and are subject to a uniform
gravitational field. The density is given by the usual linear Bous-
sinesq type approximation and the viscosity by a nonlinear func-
tion of the temperature and salinity.

The discretization of the governing equations is based on the
respective weak formulations. The rectangular geometry allows
for spectral type approximations for which the essential homoge-
neous boundary conditions can easily be imposed. This choice of
method is justified not as much from the outstanding accuracy
spectral methods can achieve but rather to obtain a moderate
accuracy employing instead a modest number of spatial modes
which nevertheless may prove to be adequate for SGSP modeling.

The numerical model developed simulates the three zones that
characterize a SGSP attempting to capture the boundary zones
behavior by using a non-uniform nodal distribution (Gauss–Legen-
dre–Lobatto nodes).

1.1. Notation

A cartesian coordinate system is employed throughout with po-
sition given by x ¼ ðx1; x2Þ and time is denoted by t.

The domain for the examples in Section 4 is a rectangle
X ¼ ½0; L1� � ½0; L2� as depicted in Fig. 1. Its boundary is @X ¼

S4
i¼1Ci,

where the Ci are the faces (C1 is on the plane x1 ¼ 0, C2 on the plane
x1 ¼ L1;C3 on the plane x2 ¼ 0 and C4 on the plane x2 ¼ L2).

2. The governing equations

2.1. The diffusion equations

The two diffusion equations for the temperature T and for the
salt concentration S are of the following type
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rð@tuþ v � ruÞ ¼ r � q; in X ð1Þ

Here u ¼ uðx; tÞ represents the scalar field, v ¼ vðx; tÞ is the fluid
velocity, r > 0 is a scalar and aðxÞ > 0 is a scalar field. The flux vec-
tor is of Fourier or Fick type

q ¼ �rðauÞ ð2Þ

The boundary (BC’s) and initial (IC) conditions considered are

u ¼ 0; on @X0 ðessential BC’sÞ
a@nuþ hu ¼ c; on @X1 ðnatural BC’sÞ
uðx;0Þ ¼ u0ðxÞ; in X

ð3Þ

We note that the essential BC’s are homogeneous; non-homoge-
neous BC’s will be addressed later.

2.2. The balance of momentum

The fluid is assumed to be newtonian and incompressible. How-
ever, the density q in the buoyancy term (see below) and the vis-
cosity m are taken to depend on the several diffusion components
present (temperature and salinity).

The balance of linear momentum delivers the Navier–Stokes
equations

qð@tv þ ðrvÞvÞ ¼ �rpþr � ð2lDÞ þ qb; in X ð4Þ

where

D ¼ 1
2
ðrv þ ðrvÞTÞ; T ¼ 2lD ð5Þ

denote the strain rate and stress tensors.
The incompressibility condition is expressed by

r � v ¼ 0; in X ð6Þ

The boundary (BC’s) and initial (IC) conditions considered are

v ¼ 0; on @X0 ðessential BC’sÞ
v � n ¼ 0 and t � n ¼ 0 on @X1 ðnatural BC’sÞ
vðx; 0Þ ¼ v0ðxÞ; in X

ð7Þ

We note that all the BC’s are homogeneous.

2.3. The Boussinesq approximation and variable viscosity

The Boussinesq approximation the density consists in taking q
in the LHS of (4) as constant and equal to some reference value
q0 but allowing it to depend on the diffusive components in the
term qb in the RHS of (4).

In the presence of R diffusive components, the Boussinesq
approximation consists in making a linear approximation on q by
declaring that

q
q0
¼ 1�

XR

r¼1

arður � ur0Þ ð8Þ

where the ar is a constant coefficient relative to the component r
and q0; u0 are reference values. Specifically, for the case of temper-
ature T and salt concentration S, expression (8) amounts to

q
q0
¼ 1� aTðT � T0Þ � aSðS� S0Þ ð9Þ

The term qb in the right hand side of (4) is in our case the force
due to gravity. From the Boussinesq type approximation (8) it fol-
lows that

q
q0

b ¼ 1�
XR

r¼1

arður � ur0Þ
 !

g ð10Þ
Introducing this relation in (4) we get

@tv þ ðrvÞv ¼ �rp0 þ r � ð2mDÞ þ b0 ð11Þ

with

p0 ¼ p
q0
þ 1�

XR

r¼1

arur0

 !
ðg � xÞ

b0 ¼ �
XR

r¼1

arurg

ð12Þ

We assume that the kinematic viscosity is given by

m ¼ m0f ðu0; . . . ;uRÞ ð13Þ
3. Discretization

3.1. The weak formulation

The weak form of (1) and (4) are obtained by multiplying both
of its members by test functions, integrating in X and applying
integration by parts to decrease the order of the derivatives of u in-
volved (see, for instance [28] for details).

3.2. Basis functions

The domains X we are interested in are cartesian products of
intervals, so we construct basis functions in a systematic way as
tensor products of univariate functions. These basis possess the
regularity required by the weak forms (in fact, they belong to
C1ðXÞ) and are constructed to satisfy the essential homogeneous
boundary conditions thereby generating admissible trial spaces.

For the examples treated we employed for trial and test func-
tions tensor products of Lagrange polynomials with Gauss–Legen-
dre–Lobatto nodes (see [29–31]) or modifications thereof
whenever compliance with homogeneous essential boundary con-
ditions was required.

To identically satisfy the incompressibility condition (6), the
velocity basis functions were expressed in terms of a stream func-
tions basis functions w, by putting v ¼ ð@x2 wðx1; x2Þ;�@x1 wðx1; x2ÞÞ
thereby effecting a considerable simplification by eliminating the
pressure term from the problem formulation.

3.3. The ODE’s system

The ODE’s systems resulting from the space discretization of the
diffusion and momentum equations yield after assemblage a global
system of ODE’s that we write as

_yðtÞ ¼ fðyðtÞÞ; yð0Þ ¼ y0 ð14Þ

where y denotes the time dependent coefficients and y0 is the coef-
ficient vector obtained by interpolation of the initial conditions.

This ODE system is moderately stiff and the BDF (Backward Dif-
ferentiation Formula) method together with a variable step-vari-
able order algorithm designed to satisfy user specified error
tolerances as implemented in the subroutine VODE (see [32])
was employed for its solution.

4. Results

The richness of the convection patterns found in Rayleigh–
Bénard problems is enormous (see [33, Ch. 6] for a thorough dis-
cussion and references). Here we are interested in obtaining the
equilibrium states defined as the zeros of the right hand side
fðyðtÞÞ of (14) namely to assess their nature, wether they are sta-



Table 1
Data used in the examples.

Units Case G Case S

L1; L2 m 0.1 0.1
q kg=m3 1259 1021
Cp J=m3 �C 2620 3740
m0 m2=s 1:4� 10�4 0:58� 10�6

aS m3=kg – �0:64� 10�3

aT K�1 5:4� 10�4 4:5� 10�4

rS – 1
rT J=m3 �C 3:3� 106 3:8� 106

T3 K 323 323
Tamb K 299 292
v0 m=s 0 0
T0 K Tamb Tamb

S0 kg=m3 – 51� 44:9x2=L2

T: h1 ¼ h2 W=m2K 4.13 4.12
T: h4 W=m2K 7.84 14.89
T: c1 ¼ c2 W=m2K 1201 1205
T: c4 W=m2K 2349 4533
S: h1 ¼ h2 ¼ h3 ¼ h4 W=m2K 0 0
S: c1 ¼ c2 ¼ c3 ¼ c4 W=m2 K 0 0
tf s 104 6:3� 104
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tionary or oscillatory, which convection roll patterns they allow,
etc.

We reach these states by integrating the ODE system (14) for
t 2 ð0; tf � for tf sufficiently large to reach a steady state and paying
attention to the transient regimes insofar as they may condition
the selection of final states actually reached.

These steady states depend crucially on the spectrum of the
jacobian of fðyðtÞÞ and its impact on the time integration method
eventually leading for certain combination of modes to diver-
gence (if an eigenvalue with positive real part is present) or to
convergence towards spurious states, i.e., states not allowed by
the original partial differential equations system and are a con-
sequence instead of the specifics of the space discretization em-
ployed. This perplexing phenomena being attributable to the
presence of convective terms have been referred to in the liter-
ature as ‘‘approximation instabilities” to distinguish them from
the instabilities associated with time-discretization schemes
(see [31, Ch. 4] for a study applied to the advection–diffusion
equation and references therein for possible remedies to this
problem).

Experiments employing the PIV (Particle Image Velocimetry)
technique to measure instantaneous velocity fields and to detect
spatial flow structures [34] are used to validate the numerical
results.

We present and discuss results for the two cases

� Glycerin (99%) and water (1%) (to be denoted by G);
� Salted water (to be denoted by S).

and the following notation is used to refer to numerical and exper-
imental results

� Numerical results for Glycerin NG and experimental data for
Glycerin DG;

� Numerical results for salted water NS and experimental data for
salted water DS.

The boundary conditions are

� for temperature: C1 and C2 are insulated (zero heat flux), and C4

has thermal losses due to radiation and convection and also due
to evaporation in the S case; Dirichlet type on C3 where a con-
stant temperature T3 = 50 �C is imposed;

� for salinity: zero salt flux on all boundaries;
� for velocity: zero velocity on C1;C2 and C3 and a stress-free con-

dition on C4.
Fig. 2. Temperature
The initial conditions are:

� for temperature: Tð0;xÞ ¼ Tamb;
� for salinity: Sð0;xÞ ¼ 51� 44:9x2=L2;
� for velocity: vð0; xÞ ¼ 0.

A nonlinear least square fit to the International Critical Tables
for a temperature range of 5–100 �C gives the following relation
for the viscosity for the G case

mðTÞ ¼ 1
q0

aþ b exp � T
c

� �� �
ð15Þ

with a ¼ 0:095010192; b ¼ 11:992008 and c ¼ 9:1165079. The vis-
cosity for the S case is given by

106mðT; SÞ ¼ a expð�bTÞ þ c expð�dSÞ ð16Þ

with a ¼ 1:63919; b ¼ 0:03215; c ¼ 0:169423 and d ¼ �0:0489519.
Other data employed in the examples are collected in Table 1.

For the case NG a spatial discretization of ð8� 16;8� 16Þ was
employed (8 modes in the x1 direction and 16 in the x2 direction
for both the velocity and temperature). However, taking in account
the boundary conditions imposed, these correspond to
ð6� 14;8� 15Þ basis functions, leading to a total of 84� of freedom
for velocity and 120� of freedom for temperature. For the case NS
time evolution.



Table 2
G: Steady state heat fluxes.

Heat flux ðW=m2Þ G – m constant G – m variable

q1 ¼ q2 2.47 2.47
q3 �6.30 �7.40
q4 1.62 1.40

Table 3
G: Maximum and average velocities.

Vel. ðm=sÞ NG DG

Max. 1:0� 10�2 0:4� 10�2

Avg. 0:5� 10�3 0:8� 10�3
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the same domain discretization was used ð8� 16;8� 16;8� 16Þ
the last group 8� 16 pertaining to the salinity, resulting in 84 de-
grees of freedom for velocity, 120 for temperature and 128 for
salinity making a total of 332 degrees of freedom.

In order to assess the dependency of the results on the discret-
ization several runs were made employing a larger number of de-
grees of freedom. The results did not change appreciably but a
much larger computer time was required. The discretizations
above seem to be sufficiently accurate given all the modeling
assumptions made.
Fig. 3. G: Velocity fi

Fig. 4. S: Temperatur
For the sake of presentation of results, the temperature is adi-
mensionalised as

h ¼ T ! T � Tamb

T3 � Tamb
ð17Þ

and salinity as

x ¼ S! S� S4

S3 � S4
ð18Þ
4.1. Cases NG and DG

For these cases experiments showed that the stationary state
was reached at tf � 104 s which has been adopted also for the
numerical simulations.

4.1.1. Temperature
Figs. 2.1 and 2.2 depict the temperature evolution at different

depths. In Fig. 2.1 the temperature was obtained in steps of i C.
In the experimental setup the temperature was measured by 18
probes (P1–P18) and is shown in Fig. 2.2. The line denoted by P1
corresponds to a temperature measured near the bottom and the
line denoted by P18 to the temperature measured near the top.

The temperature time evolution is similar for the NG and DG
cases, the steady state reached at about 104 S in both situations.
At the central line x1 ¼ L1=2 we obtained T4 � T3 ¼ 1:3 �C for NG
eld at tf ¼ 104s.

e time evolution.



Fig. 5. NS: Salinity time evolution.

Table 4
S: Steady state heat fluxes.

Heat flux ðW=m2Þ S – m constant S – m variable

q1 ¼ q2 0.13 0.25
q3 �5.51 �4.42
q4 0.94 1.07

Fig. 6. Convection cel

Fig. 7. Convection cells
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and T4 � T3 ¼ 1:2 �C for DG thus confirming an almost homoge-
neous steady state. The steady heat losses presented in Table 2
are almost the same wether the viscosity is constant or variable.

4.1.2. Velocity
Figs. 3.1 and 3.2 depict the convection cells configuration super-

posed with the temperature field for NG and superposed to a shad-
owgraph image for DG, both at the final stationary state. Again no
ls at 6 cm height.

at 7:5 cm height.



Fig. 8. Convection cells at stationary state.

Fig. 9. Velocity and salinity fields.

Fig. 10. Velocity and salinity fields at 6:3� 104 s.

M.C. Giestas et al. / International Journal of Heat and Mass Transfer 52 (2009) 2849–2857 2855
appreciable difference between NG and DG is detected. Fig. 3.1 also
shows the temperature profile x1 ¼ L1=2 at the stationary sate.

Table 3 shows the maximum and average velocities for NG and
DG at the stationary state. There is no appreciable difference be-
tween the velocities obtained numerically and measured
experimentally.

Both temperature and velocity values for the G case show a rea-
sonable agreement between the numerical and the experimental
results which seem to validate the numerical model developed
thus instilling confidence for the more demanding S case.

4.2. Cases NS and DS

The numerical results for the salted water case are presented for
the time tf ¼ 6:3� 104 s substantially greater than the time
tf ¼ 4� 104 s required in the experiments to reach the steady
state. This discrepancy will be addressed below.

4.2.1. Temperature and salinity
The temperature evolution at different depths is presented in

Figs. 4.1 and 4.2. These evolutions look similar and at x1 ¼ L1=2
we have T4 � T3 � 1 �C at the stationary state for both the NS
and DS cases.

The salinity evolution for the NS case, Fig. 5.1, agrees with
Fig. 4.1, the salinity homogenization occurring at about the same
time as the temperature’s. We also present the salinity time evolu-
tion for the constant viscosity case in Fig. 5.2. Both Figs. 5.1 and 5.2
point to a qualitatively similar behavior. However, Fig. 5.2 shows
that the homogenization is achieved at a later time of approxi-
mately 7� 104 s.
Table 4 shows the differences in the steady heat fluxes when
considering m constant or variable, this later case yielding slightly
larger heat losses at the surface.

4.2.2. Convection patterns
Figs. 6.1–8.2 show the growth of the bottom convective zone

which exhibits a steplike character.
Numerical simulations and experimental results are shown at

the instants the convective zone reaches three depths: 6 cm;

7:5 cm and 10 cm, this last one corresponding to the final steady
state.

Figs. 6.1, 7.1 and 8.1 show the velocity field superposed to the
temperature field.



Fig. 11. h and x profiles at t ¼ f0;3:8� 103;3:12� 104;6:3� 104g s.

Table 5
S: Maximum and average velocities.

Vel. ðm=sÞ NS DS

Max. 0:7� 10�2 0:8� 10�2

Avg. 0:3� 10�2 0:3� 10�2
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Experimental velocity fields obtained from PIV are presented
superposed to the respective shadowgraph images. A ruler gives
indication of the bottom convective zone evolution (see Figs. 6.2,
7.2 and 8.2).

Figs. 6.1–8.2 show the salinity gradient being destroyed in the
process of reaching a homogeneous final state. This process can
also be observed in Figs. 9.1–10 where the salinity evolution is
depicted.

The salinity gradient becomes weaker at about 3800 s and the
bottom convective zone begins to grow in a steplike fashion in
accordance with the observations of [35]. A second step to
7:5 cm at about 31;200 s can be seen in Fig. 7.1. This growth can
also be seen in the shadowgraph images Figs. 6.2, 7.2 and 8.2:
two layers, the bottom one corresponding to a convection zone
and the upper corresponding to a quiescent zone not yet reached
by the convective movements. Convection cells grow to reach
10 cm at about 63,000 s corresponding to the steady state, see
Figs. 9.1–10.

Figs. 11.1 and 11.2 show the temperature and salinity as a
function of x2 for t ¼ 0 s;t ¼ 3800 s and t = 31,200 s, these last
two corresponding to the same instants as shown in Figs. 6.1
and 7.1, respectively. The homogeneous state is also repre-
sented for tf = 63,000 s. The temperature and salinity profiles de-
velop in accordance with similar results in [36–38,27,39] and
[13].

Table 5 shows the maximum and average velocities for the NS
and DS cases at the stationary state revealing similar values for
these quantities.

5. Discussion and conclusions

For the NS and DS cases the temperature and salinity evolution
are similar albeit the numerical model requires a longer time to
reach the steady state than that measured in the experiments. This
differences from tf � 4� 104 s for the experiments and
tf � 6:3� 104 rms for the numerical simulation can be attributed
to the following circumstances:

� three-dimensional effects present in the experiments but absent
in the two-dimensional model imparting greater mobility to the
fluid;
� the temperature at C3 is constant in the model but the experi-
mental setup is unable to precisely control this variable allowing
for spatial and temporal temperature variation at C3 to be about
1—2 �C;

� the numerical model for the S case considers thermal evapora-
tion losses to the atmosphere at C4 but disregards any associ-
ated mass transfer; however the shadowgraph images show
that this mass transfer amounts to a reduction of about 1 cm
in a 10 cm deep cavity which is not negligible. This hypothesis
seems to be corroborated in the G case where no surface evap-
oration is present and the time of homogenization is similar
for the NG and DG cases.

The introduction of variable viscosity in the model leads to the
following effects on the heat fluxes. For the G case the fluxes are
similar for variable or constant viscosity but for S case the heat flux
at C4 is slightly higher for variable viscosity than for constant vis-
cosity. This stresses the importance of employing a realistic viscos-
ity variation in assessing thermal losses at the surface of a SGSP.

The results for the NG and DG are similar and in this sense the
experiments validate the numerical model. For the S case the evo-
lution of the bottom convective zone and the onset of convection
also agree for both numerical and experimental results. In the S
case there is an influence of variable viscosity in the behavior of
the fluid that justifies the computational complexity added to the
numerical model.

We conclude that the numerical model developed employing a
modest number of degrees of freedom is reasonably validated by
the experimental data and thus can be used as a analysis tool for
the design of SGPS.
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